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Abstract—Two-dimensional equations of motion of piczoclectric crystal plates, obtained from the three-
dimensional equations of linear piezoelectricity by expansion in power series of the thickness coordinate of
the plate, are solved for forced vibrations of electroded SC-cut quartz plates. Results of computations are
given for frequencies of simple thickness modes of vibration, for the dispersion of straight-crested waves
and for frequencies of vibration of a strip, along with its dimensional ratios for minimal coupling of the
fundamental thickness-shear mode with overtones of fiexure, face-shear and thickness-twist.

1. INTRODUCTION

A review of vibrational properties of doubly rotated quartz plates may be found in a recent
article by Kusters[1]. Solutions of the three-dimensional equations of piezoelectricity for the
simple thickness modes of vibration of doubly rotated plates appear in Tiersten’s book[2] and
in a comprehensive article by Ballato[3]. Simple thickness modes are those in which the
oscillatory displacements are functions of only the thickness coordinate of the plate. Solutions
of two dimensional plate-equations for doubly rotated quartz strips, in which the displacements
depend on a coordinate in the plane of the stip, were presented by Lee and Wu[4] for the
purely elastic case. Some of their results are extended, in the present paper, to account for the
effects of piezoelectric coupling and the mass of electrode coatings.

In the following Section the three-dimensional, linear equations of piezoelectricity are
exhibited. The equations are solved, in Section 3, for the simple thickness modes and the results
of computations of the first three frequencies are given for the electroded SC-cut. A brief
review of the derivation of two dimensional plate-equations by expansion in power series is
given in Section 4 and restricted to the first order in Section 5. The solution of the two-
dimensional equations for the simple thickness modes and the solution of the equations
governing the correction factors for the simple thickness frequencies are described in Section 6.
Section 7 contains the derivation of the dispersion relation for forced, straight-crested waves in
the electroded plate and the graphical presentation of the results of computations of the
branches for the SC-cut. The final Section includes the solution for the forced vibrations of an
electroded strip with mixed edge-conditions and the graphs of portions of the frequency
spectrum. Also, in Section 8 is a sketch which transforms a frequency spectrum for mixed
edge-conditions approximately to one for free edges. The results exhibit discrete ranges of
dimensional ratios favorable to the avoidance of coupling of the fundamental thickness-shear
mode with flexure, extension and face-shear overtones and the associated activity dips. An
appendix contains formulas for computing the material constants of quartz referred to doubly
rotated axes along with the results for the SC-cut.

2. THREE-DIMENSIONAL EQUATIONS OF PIEZOELECTRICITY
We begin with a brief review of the three-dimensional, linear equations of piezoelectricity[2]
from which are to be deduced two-dimensional plate-equations and frequencies of simple
thickness modes which are required for the computation of correction factors appearing in the
two-dimensional equations.
The three-dimensional field equations are the stress equations of motion and the charge
equation of electrostatics:

Tij,i = Pﬁj; Di.l =0, (n

tInvestigation supported by the Office of Naval Research.
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142 R. D. MiNDLIN
where p and the Tj;, u; and D; are, respectively, the mass density and the components of stress,
mechanical displacement and electric displacement.
The constitutive equations are
Ti = cijuSu — @B D; = epSi + ;E;, )]
where the ¢y, e and ¢; are the components of elastic stiffness, piezoelectric strain constant

and dielectric permittivity, respectively. S; and E; are the components of strain and electric
field which are expressed in terms of the ; and the electric potential ¢ by

1
Si=zituy), E=-d. (3)

Combining (1)~(3), we have the equations of motion,

Citltsi + i i = iy
eyiitiy ;i — € ; = 0, 4)

which can be derived from a variational principle, for a region V bounded by a surface S with
outward normal n:

s at [ k-Hyav+ | :dr [ aaw+ asras =0 (5)

where the t; and o are the surface traction and surface charge. K and H are the kinetic energy
and electric enthalpy densities:

1

K= % pi, H= % ci,-k,S.-iSk, ~3 e;E.E; — e ESy, )
from which
T;= aH/aSij, D; = - 3H/3E. )

Upon substitution of (6) and (7) in (5), the latter can be converted to the variational equation
of motion:

jtl dt J’ [(T,’"_,‘ - pl'i,-)'o'u,- + D“8¢] dv +I l dt I [(t‘ - n,-T,,~)8u,- + (0' - n,'D.')8¢] dS= 0, (8)
f v 1o s

which produces the field equations (1) and the boundary conditions

nT;=t or wy=@ on S, )]
where &; is the surface displacement, and

nDi=c or é=¢ on S, (10)

where ¢ is the surface potential. As an alternative to (9), a component of n;T; and the resultant
of u; in the plane at right angles, or vice versa, may be specified.

3. SIMPLE THICKNESS-MODES
Simple thickness-modes of vibration of a plate are those in which the three components of
displacement are independent of the coordinates parallel to the middle plane of the plate.



Forced vibrations of quartz plates 143

We consider an infinite plate bounded by surfaces at x;=xb which are coated with
electrodes each of thickness 2b’ and mass density p'. A uniform alternating voltage V ¢ is
applied to the electrodes so that the voltage drop across the thickness of the plate is 2V. The
response of the plate is independent of x; and x; whence {4), (in the reduced notation whereby
pairs of indices 11, 22, 33, 23 or 32, 31 or 13, 12 or 21 become 1, 2, 3, 4, 5, 6, respectively) reduce
to

Coplli 2+ Collan + Caslha + €3 22 = pilly,

Caltin+ Cpllan t Coutlann + e 1 = pliy,

Caslly 22+ Coglla.ma + Caglisn + €24 22 = pilla, (1m
el 22+ enly n+ exltan— €nd = 0.

The boundary conditions (9) and (10), on xy= = b, become
(Te, To, T = F2p'b'(iiy, iy, Giy), ¢ =% Ve™ (12)
or

Ceslla+ Casllaa+ Caglts o+ 262 = F 2p'b'ily,
Cally 2+ Cpllaz + Cogltsy + end o = + 2p'bil,

Calli 2+ Coqllzz + Casltza + €42 = F 2p'b'ily, (13)
¢==+Ve"
From the fourth of (11),
@ = (elt; + €2tz + ex4ui3) €2+ Ax>+ B; (14)

but the constant B may be omitted as a constant ¢ produces no electric field.
Now, substitute (14) in the first three of (11) and get the same form of equations except with
¢y, replaced by &, where

qu = Cpq + ezpfquézz. (15)
Thus:
Costimnt+ Casllann + Caglin o = pily, »
Calty 22+ Caalla 22+ Caally o = pily, (16)
Casliy 2+ Coallan + Caully 22 = pills.
Now, take

u; = A sin gx, e, ¢ = ¢, sin nx; ™ 17
and substitute in (16) to get
(@~ DA+ & Ar + Caeii’As =0,

EasiiP A+ (i = DA+ Euii®As =0 (18)
CusliP A+ EuP A+ (Cufi— DA, =0

where

f=qb, 7=p0’bYéw Epg = Cpg/Ces (19§
§S Val. 0. No. 2D
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The determinant of the coefficients of the A, in (18), set equal to zero, is a bicubic equation

in n with three roots 17, j = 1,2, 3. Then (17) can be extended to

3
=, Ajsinnx,
=1
and (14) to

3
o= zn €22(exAij + €Ay + €Ay) sin X, + Ax,,
e

iwt

with e’ omitted here and in the sequel.
For each 7;, define

az,'=Azj/A|,', aq':AJi/Alj’ ag =1, B;= Ayb.

Then

u = z Bjbay; sin nx,,
uy = }I: Bjbas; sin nx,,
Uy = Z Bjba; sin nx,,
o= 2}: Biben(exas; + ey + €xay)) sin mxa + Ax,.

We may find a»; and ay; from the second and third of (18) with n replaced by »;:

. -2 A - - P
(Ex@if = DDy + Cusfifey = — Exgiif,

. 2 P A % =2
CoaMj 03j + (C«ﬂjz‘ 9-2)“4,' =—CagMj »
from which

g = [(624C46— EsCa)Tij' + Easm Ve,
a4 = [(E24as — Casldi}' + Casiif VN,
a = (Enf — AN - B)) - ¢l

Upon substituting (25) in (23) and the result in the boundary conditions (13), we find

BeiB1 + BeaB1+ BesB3 = — 3 V/bies,
BB+ BnBy+ BuB3 = — € V/ble,
BB\ + BaB:+ BuBs = — e V/bles,

where
Bai = 2 ayilEasii €08 i — (8pREY + &ap) sin i)
in which a and b range over 2, 4, 6 and i over 1, 2, 3; 8, is the Kronecker delta and
€ab = €xq2l€28s, R =2p'b'Ipb,

i.e. R is the ratio of the mass of both electrodes to the mass of the crystal.

(20)

(n

(22)

(23)

(24)

(25)

(26)

@n

(28)



Forced vibrations of quartz plates 148

The determinant of the coefficients of the B; in (26), set equal to zero:

1Ba} = 0, 29

is a transcendental equation whose roots ) give the frequencies of the simple thickness-modes.
Except for notation, division by ¢,, to make each element dimensionless and the additional
term 3,,R$?, which accounts for the inertia of the electrodes, (29) is the same as Tiersten's
equation (9.69), (12}, p.92).

For the SC-cut (see the Appendix) and R = 0.01, the first three roots of (29), converted from
the § of (19) to

Q = Qubl7)(plce)'” = 20X Eeol con) (30)
are
0,=17512
Q,=1.0235 31)
0= 0.9304

where §1,, {},, (), give the fundamental frequencies of the essentially thickness-stretch, - twist, -
shear modes, respectively; “essentially” because each of the three modes has contributions
from all three components of displacement, u,, &, us, one of which predominates in each mode.

4. EXPANSION IN POWER SERIES

The two-dimensional equations of motion of piezoelectric crystal plates, to be used in the
sequel, are deduced from the three-dimensional equations by a procedure based on expansions
in series of powers of the thickness coordinate of the plate. The process was developed in
stages: beginning in 1952[5], extended in 1962[6] and revised in 1972[7]. As revised, the start is
with expansions of mechanical displacement and electric potential in series of powers of the
thickness coordinate x,:

U = ; U, ¢= 5} x"o™, (32)

where u!™ and ¢ are independent of x;. The three-dimensional strain and electric field are,
from (3) and (32),

Si= %(ui.i +uy)= 2 X2"s(i;l ) E=-¢;= 2 x"E'™, (33)
in which the two-dimensional strain and electric field of order n are

S = % [+ ul + (0 + 1)(Buf™ "+ Su™ "),

EP=- %~ (n+ Dong™". (34)

The kinetic energy density and electric enthalpy density of the plate are defined as
. b . b
K=Lxdx,, H=f Hdxy, 39)
- ~b

whence, from (6), (32) and (34),
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% 22 mﬂﬁ;m}“in)
1 m) oin m n "
H =33 3 BulcuSy"S - GEME" - 2e4E\"SY) (36)
where
B =2b""" m+n+1),m+n even; O.m+n odd. (37

The constitutive equations of order n are
4
T = j \ X"Tj dXs = 3, Bra(CuSii - eEV™) = 3H/3S,
D" = j x'D; ;= 3 Bua(ewSi” + &E|™) = ~ aHIOET™. (38)

The variational equation of motion becomes

) j dt j (TR-nTE 4 BT~ p S, Bt ™)5ul™ dA
m
+3 J' dr j (D% - nD$~"+ B,D")56™ dA
fy

+ j‘ dt ﬁ BtV = n TH)oui” +(B,d™ - n.DMdp™ds =0, (39)
n 0

where the index ¢ ranges over 1 and 3 only, s is the coordinate along the edge curve C,
B,=2b""2n+1) (40)

and the face-tractions T!", face charges D', edge tractions t™ and edge charges d' are
defined by

T =B,'[x,"T;1%, D™ =B;'[x,"Djl%,
b b
t{" =B j x"(nTy)c dx;, d" =B} J x2"(n.De)c dxa. (41)
- b

Finally, the field equations of order n are
Tl -nT§ ™"+ BT = p 3 B,
D{?-nD? "+ B,D™ =0, (42
with edge conditions, on C,
n.TH =Bt or u”=al (43)
where i{" is the edge displacement of order n, and
nDY =B d™ or ¢ =¢™ (44)

where ¢' is the edge potential of order n., As an alternative to (43), a component of n, T and
the resultant of u{" in the plane at right angles, or vice versa, may be specified.
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S. FIRST ORDER APPROXIMATION

The equations of the preceding section are now to be restricted so as to exclude simple
thickness modes higher than the fundamental stretch, twist and shear modes—which involve
only terms of orders n =0, 1. The components of strain and electric field, of these orders, are,
from (34),

¥ ) ) a {6 0,

s(‘(:) = s(l()) - u(l('l zs((l) S(() ( )+ u' ) E‘ b = ¢TI)
S(O)_. S(O)_ (l) 28(0) - S(O) (0) + u E(zo)'—“ _ ¢(l) (45)

0] (h () ¥

s( ) .- S(O) - u(()) S(O) - S( ) u(zﬂl ) E(; ) = ¢((‘)

SP=80=y® 280 =§PV=uyB+2uP EP=-¢P
S(zzl) = S(zl) = (22) 2s(l) _ S(5”— u(]l;+ u(l) E(I)_ _2¢(2) (46)
SP=50=uf 280 =5V =ull+2u® EP=- 4%,

The strain S% is associated with the second thickness-stretch mode—which is not to be

included. We set T4} and i equal to zero so as to permit free development of S% without
contribution to the kinetic or potential energy. From (38),
T(ul '= (b 3)(cijkls(kll) - ekiiE(kl)) Y]
so0 that we set
= (2b3/3)(0~2klsm - ekZZE(kI)) =0. (48)
Write these two equations as
3TPRD = (cjuS\Y - CiinSH) + €iinSY — ey EY (49)
and
8% =~ couStlcam + S + enEL e, (50)

respectively. Then substitute the expression for S%, in (50), for the S outside the parentheses
in (49) and collect terms to obtain, in place of (47),

T = @b 3 SK - eEY) 1))
where
i = Cig — CinColCran €k} = € — enCipnl Cooma. (52)
It may be verified that (51) satisfies (48). .
The remaining terms in (46) of order n = 2 are u?®, u'? and ¢'®. These are to be omitted and
¢!} substituted for e; in D",
At this stage, the constitutive equations of the first order approximation are

T =2b(ciuSE - eiEY), D" =2b(euSP + €;E™), (53)

TP = @b'BYcS - eEM. DI = @b'BNeRS + EL),

where
S(o) (u(°)+ u«”+ qu,”+ 52,14“)) Ew» (ﬂ»_ 5i2¢(l)

Sy = (u."+ uif), EP=-¢?. (54)
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In the reduced notation (53) are
T =2b(c, (ST - eEL), DY =2b(e;,SP + ,EM),

T(l) - (2b3/3)(C$,2$(” e(l)E(l)) D(l) - (2b3/3xe(l)s(l)+ E.,E“)) (55)

and the corresponding electric enthalpy density is

H = b(c,(SVSP - EPE" - 2¢,,EXS™)

+(b°3)(cVSPSP - EPVE -2 efDE"SD). (56)
It is important that the simple thickness frequencies from the approximate equations match
exactly those from the three-dimensional equations. As the approximate equations now stand,
the match is not exact owing to the difference between the exact trigonometric distributions of
displacements, from (23), and the approximate linear distributions from the early terms of (32).

To compensate, correction coefficients are inserted as multipliers of the thickness-stretch and
-shear strains S, P, S. Thus

Sy - x,S’  (not summed) e
where
= KP'p =2 4 6
Kp {],p=l35 (58)

and the three x, are to be determined so that the three simple thickness frequencies from the
approximate equations match those from the three-dimensional equations.
The revised electric enthalpy density is

H = b(cqSy'ST - EVE]" - 260ELSY)
+(b’3)(cpaSy'SY - &EVE{" - 2eEL’S ), (59)

where

¢ = kKoo €0 =kK,e, (not summed) (60)

and the S%" and E{™ are

0; 0,

SP=uf) SP=uR+ul’ EP=-99Q

() { ] {0 __ . (0 0] 0)

SP=uf SP=uP+uf} EP=-¢"

© _ . (0) © __ . (0 1 0) ()

SP=us} SO=uf+ul’ EP=-¢9 (61

M _ N_ 1
SP=ul) SP=ulf} EP=-¢9
m_ My
S = uiy+ uf)
W, o, n_ i
SP=uf} SP=ul) EY=-49.

The constitutive equations are
TY = 3H/3Sy = 2b(c ST - e9ED),
T} = 3H|3S} = (2b/3)(c ;S - elgEL"),

D = - 3HI3E" = 2b(e{y ST + €;E'), (62)
D{” =~ H/3E{" = 2b*3)(e()SY + &,E|");
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and, finally, the field equations are

TP +26T = 26pii?,
T -TH+@bNT{" = 2b°13)piif",
D +2bD" =0, (63)
D{?- DP+(2b3)D" =0

The inclusion of the thickness-stretch mode, in (59)—(63), is what distinguishes them from
the equations in[7].

6. CORRECTION FACTORS

In this section the procedure is established for computing the values of the correction
factors «,, a=2,4,6, so as to make the simple thickness-frequencies, from the first order
equations, the same as the corresponding ones obtained in Section 3 from the three-dimensional
equations.

To find the simple thickness-frequencies from the first-order equations, we set

u}o) = 0‘ u?) - Aioeiﬂl, ¢(0) - 0’ ¢(|) = b—lv eiu( (64)

in the equations of motion.
In general, from (41),

T = B;'[x,"Ty)%
and, for electrode coatings of density p' and half-thickness b’,

Tai}ee =+ 2p'bilj) 2. (65)
Then

T{" = (2b)"'(% 20'b"ii;)., = — Roii{",
T{" = 312b*)[* x:2p'b" i), = — 3Rpii " (66)

where, again, R = 2p'b’/pb.
With (64) and (66), the stress equations of motion (63) reduce to

(T, T, T = - @b°3)(1 + 3R)pi", i, i
DY = (2b*/3) D", ()]

in which

TO = 2b(cQu+ cQu + cQuf + eLo,
T = 2b(cQui’ + cQul + cHud + e,
TE =2b(ciui” + cidui” + clus” + €56 "), (68)
DY =2b(eRu’" + eQu + eRus’ - eng ).

The last of (67) and (68) contribute to a formula for the current, per unit area, through the
crystal:

I =(2b%3)dD"/dt. (69)
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From (64) and the first three of (67) and (68), we find

(] - ﬂz/EﬁZ)KﬁA |0 + (-‘26K2A30+ C‘“K4A30 == ezg,V/bC(,f,,

CZ(\KﬁA ln + (622 - ﬁzlkzz)KzAzo + (,-'24K4A30 =—en V/b('(,(,. (70)
CakoA |+ CaakaAr’ + (Caa — QYR AKAL = = €24 V/bCgs,

where
Cpg = CplCesr K= 126,777, Q7= (14 3R)wl(m celdpb?). (71)
The determinant of the coefficients of the A’, in (70), set equal to zero, yields
A(*+BQA'+ CA%+ D=0, (72)
where

A = l/k22E42E62,

-2, x =2, =2s 25222
B = —(ERy° + Cuks” + R )R Ry Ko s

_ _ o _ 7
C = (Cas— ERMRS + (Ex— EoRS + (Cpa€aa— IR, 3
D = — (€€ + 2€26C2uCa6 = C22C % — CaaC6— €34).
The bicubic (72) must be satisfied by each of
Q=0 1+3R), a=2.4,6 (74)

where the 1, are the exact roots from (29). Thus, we have the three simultaneous, nonlinear
equations on the «,:

Aﬂ26+ Bﬂ; + Cﬂzz+ D= 0,
Aﬂ46 + Bﬂ44+ Cﬂ42 +D= 01 (75)
Aﬂ66+ Bﬁﬁ“*‘ Cﬂgz +D=(.

We find, from (75),
A = - D00,
B =- A+ 07+ 0, (76)
C = A0 + 0.0 + 00

and note that the right hand sides of (76) are independent of the x,. From the third of (73) and of (76),
K, may be expressed in terms of k4 and K¢ (and the €2, and ¢,,); and this expression may be used to
eliminate &, from the second of (76), leaving that equation as a quadratic in 1/&,’ with coefficients
functions of k.. Then 1/&,’ can be obtained as the algebraically larger root of the quadratic—a
function of &, say

1Rk = f(Ke). (77)
With this and the third of (76), we may express k, in terms of «, alone, say

i) = g(Re). (78)
Upon substituting (77) and (78) in the first of (76), we have

f(Re)g(Re)lRe’ + DI, = 0, (19)
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an equation on K, alone, which may be solved, iteratively, for &.; following which %, and &,
may be obtained from (77) and (78). For the SC-cut and R = 0.01, we find

Ez = 1004933.
Ky = 1.005039, (80)
Kq = 1.005083.

7. DISPERSION RELATION

We consider, again, an electroded, infinite plate under a uniform voltage drop V e*|b across
the thickness; but, in addition to the forced, simple thickness-modes, of the preceding section,
we now permit variation of displacements along x;:

u® = Absin éx, e, u" = A cos &x, e,

u = A,bsin &x; e,  u” = Ascos &, e,

u = Asbsin &x, e,  u{” = Aqcos éx, e, (81)
¢@ = Ab sin &x, €™, ¢V =(V/b)e™.

When independent of xs, the stress-displacement equations become
1 0),. (O (0) 0] (4 ©) 4 (0) [P
TO = 2b[cQu® + cQuf® + cQui + cRut + chaud + ui) + e P + 276",
H_ 3 m,. ) 1y, [¢) 1) (4 (1
T = 2b* 13N cpiuta + cpiuiy + Cpoust + el}d’.l)), (82)
0) 0), (0 0),.(1) 0) 1 0),, (0 0] 0; [} ) a
D" = 2b[efu) + eRul’ + eQuf + eul) + eQuf) + ui) - €17 - €26,

DI" = (2" 1Heulh + elfuh+ eugl - i)

When these expressions and those for TS” and T'", from (66), are inserted in the equations of
motion (63), the displacement equations of motion become:
o )+ S+ B+ B+ + R4+ D= (14 R
R+ e+ cSu+ B+ +ulh) + €869 + 6 = 1+ Rypi?
cfulhy+ cQuid + cQuid + cRui + e+ ull) + e3P0 + €26 = (1 + Rypiis”
cut + culhi+ cfu + el
=37 Qu+ cQul+ cQuP+ cRu + Rl + ul) + e + g1 = (i + IR)pilt”
AU+ U+ cButh+ el 36 e+ cBuh + cBhut) + el + cut)
U+ B8+ 86 = (1+ R)pi?

~2c .M, (O 0,0, 0,3 », O ), (O ! 1 . (1
=37 Qui + cQus’ + cQui’+ cQu) + cQuD + ui) + DD + e ™ = (1 + 3R)piiy"
0, @ ), O () L0 ) @ ) W o M _ W

eut + eul) + eSus + efSulh + iU + ui) - €197 — €' = D

M) () () () ) “20 @), @ 4 O, () L0, (1

eV u, + eullh + esoui — 10! - 36 eNu + eDud + eful’

+eQull + QR+ u)- 16 - e = D ®)

We first find a particular solution of (83) for the constant forcing term ¢'". This is the same
as the solution for simple thickness modes, of the preceding section, except that the frequency
 need not be a resonance frequency. Then the amplitudes A,°, A,’, A’ may be obtained from
(70).

The complementary solution is found by substituting (81) into (83) with ¢'” zero. The eighth
of (83) may be set aside as it serves only at a later stage to yield the surface charge and the
current through the crystal. In the seventh of (83), D is zero from symmetry; and the equation
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Jmay be solved for A

Ar=(efEA, + eREA, + eDEA+ eRA+ e DA+ eNAdent 84)

and used to replace A, in the remaining six equations. The result is

a;;Aj = 0, Qi = @y l‘,i =1...6 (85)
where
; 2 < 2
ay =& - R an = CieéKg oy = Esf’
. . _ =
g = (Ceeb*— R’ﬂfx(f)xs ap=C tsfz a3 = Cestie
< 5 2 _ s F .z
ay=ésf — R'Q e = Crofks tys = CyefKz
2 .a B2_A2 s _—
au= e+ énE - Plxdrs a1 = Epfi, A2 = Casbia
5 L oa 2 2 .z
ass = (En+ G = VKD G16= Crufiy
e = (Caqt CssE2 = Uk
A3 = CsebKs G35 = Caséica 3= Eyskrs
ags = (Eas+ Er6EN Oue = (s + E1sEIRa Ase={Cra+ EseIxs (86)
in which

G = (#1201 + 3R ws’, o= miceldpb’, R'=3(1+ R)(1+3R),

épq = (Cpq - elpelqlfli)lc(m épq = C‘,};ﬂl‘ﬂ(sﬁm €= fb- (87)

In é,,. when p (or ¢) = 1,5,6 then r (or ) = 2,4, 6 respectively,
Resonance occurs when the determinant of the coefficients of the A; in (85), is equal to
zero:

i“ij’ =0 (88)

This is a sextic equation in £ yielding a six-branched dispersion relation as illustrated in Fig. 1
for the SC-out and R = 0.01.

In Fig. 1, the ordinate is {1 as given in (30) and the abscissa is X = 2¢b/#. The six branches
are identified according to the behavior of the corresponding modes at long wave-lengths

(£-0):

< Imaalx

Fig. 1. Plot of dispersion relation {88).
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F = flexure
FS = face-shear
E = extension
TSh = thickness-shear
TT = thickness-twist
TSt = thickness-stretch

The computation of the roots of the sextic (88), for Fig. 1, required about 90 hr on the HP-85
microcomputer. In order to reduce the computation time for subsequent use in the interval
0.91 <1 < 1.07, an approximation was introduced. In that interval, each of the six branches was
divided into three segments and a cubic, quadratic or linear curve, as appropriate, was fitted to
each of the eighteen segments so that the roots along each curve could be expressed explicitly.
For each frequency, the time for computation and storage of the six roots was thereby reduced
by a factor of about 1250. The result is illustrated in Fig. 2.

The equations of motion are satisfied by (81) and (64) for each of the £, n=1...6. Hence,
we can write

. 6

uf’ = 21 Apbsin(gx+e)e™, u’=A"+ 2| Aun €08 (€%, + €) €'
. 3

u(20) = zl Az sin (£.x,+ €) ei"’" u(zn = A2°+ Zl As, €08 (X, + €) e
. 6

uf’= 3 Asbsin(Gxite)e™, u=A’+ 3 A cosExite)e™

6
$9=3 Aubsin(Gxi+ee”, ¢ =(Vib)e, )
n=1

where € =0 or /2.

8. VIBRATIONS OF A STRIP

A strip, bounded by edges at, say, x; = * a, may be subject to a variety of edge conditions.
The only one that can be attained physically without difficulty is the traction-free condition.
However, the simplest condition mathematically is one for which the six branches of the
dispersion relation are not coupled. In the present case, this can be satisfied by

W= uP = uP=¢O=TP=TP=TP=DP=0 on x,=%a; %0)

a combination which is admissible according to (43) and (44). The conditions (90) are the

i Q?=[Q
o9 /

TSt v Tsh |8 [k F
o 1

=

2 Imas ¥ [z} Real ¥ z

Fig. 2. Portion of dispersion curves of Fig. | with expanded frequency scale.
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analogue of those for the simply supported beam in the Bernoulli~Euler or Timoshenko beam
theory, in which only the bending moment T{" and the deflection u%”, of the functions in (90),
are present and required to be zero at the ends of the beam.

With (89), (90) can be satisfied by

siné,a=0 91)
for e =0 and
cosé,a=0 (92)

for € = m/2 for each branch separately—for real £, Thus, the boundary conditions (90) can be
satisfied by (91) or (92), for real £, and each n separately if

X =2Eblm=mbla, m=1,23... (93)

This equation and (88) can be represented graphically by replotting the real part of Fig. 1 or Fig.
2 with the reciprocals of the abscissae of each of the six curves (i.e. a plot of Q vs a/mb) and
then muitiplying the resulting abscissae by the integers m to produce a set of equally spaced ()
vs a/b curves (overtone branches) for each of the six replotted dispersion curves. The result is
shown in Fig. 3 for the range 0 <a/b <24 and the frequency range of Fig. 2. The range
17 < aflb <23 is shown in Fig. 4 with the abscissa expanded by a factor of 4. The numbers
following F, FS, E, TSh and TT, in Figs. 3 and 4, are the values of m, in (93), identifying the
order of the overtone. No thickness-stretch branches appear, as their £ is imaginary in the
frequency range displayed.

The computation for the strip with free edges is more complicated; but the main effect on
the frequency spectrum, of the coupling of the modes and overtones at the free edges, is the
elimination of intersections of overtone branches. The general features of the frequency
spectrum of the coupled modes can readily be sketched, without computation, over the grid of
the spectrum of uncoupled modes and overtones. Figure 5 is such a sketch on the background
of Fig. 4. If m odd or even has been chosen correctly for each set of overtones, the only error
in a sketch—such as in Fig. 5—is in the strength of the coupling; i.e. whether the coupled
branches lie close to the intersections (weak coupling) or far from the intersections (strong
coupling).

£ 5’ £y En (%) s
179 ] v  Fn| F53 |F sl hn! [£11]
F2 24| Flo ;5 r uz mm 4 FRO ¥ m ’ u‘ -I (XY
)

i N N
1.a73 M
M

.99 sk §
.95 1\1\ a \\ \*""

=} 12 24
a‘b

D
—
e

Fig. 3. Frequency spectrum of strip. with mixed edge-conditions (90}, computed from (88) and (93).
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Fig. 5. Frequency spectrum of strip with free edges. sketched, without computation, on grid of branches
illustrated in Fig. 4.

In both Figs. 4 and §5, it may be seen that there is an interval of a/b, along the branch TSh-1
between F-24 and F-26, where there are no E and FS overtone branches. Halfway into that
interval, at about a/b = 19.6, would be a favorable dimensional ratio for a minimum of activity
dip resulting from coupling of thickness-shear with flexure, extension and face-shear. Similar
ratios occur at a/b = 32.2, 44.8, 62.1, 71.5. .. ; again for R = 0.01 and the SC-cut.
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APPENDIX

Formulas for material constants of doubly rotated quart: plates
a-Quartz has an axis of three-fold symmetry, say Xs. and three axes of two-fold symmetry, one of which is designated
as X, in a right-handed, rectangular coordinate system X;; i = 1,2, 3. Rotate the X; system a positive angle ¢ about X and
a positive angle 8 about X| to a new orientation x;. The direction cosines, I, of the x; axes with respect to the X, axes:
X X2 X»
xn lu la hs

x2 Iy by in

x3 by by I (a)
are
li=cos ¢ la=sin¢ fu=0
Iy=~sindcos® Ip=cospcosd Ipn=sing {b}
I3 = sin ¢ sin § hp=—cos¢singd  hz=cosé

The quartz plate is cut with its thickness parallel to x2 and a pair of edges parallel to x;.
The elastic, cru, piezoelectric, ¢., and dielectric, e, constants, referred to the rotated axes x; expressed in terms of
the constants . €%, €}, referred to the axes X, are

Crota = € Gutbrlslu
e = E?ﬂd’;iluv {c)
€ = €ihilyps

summed over repeated indices i, j. k, | For a-quartz,

ch=ch ch=ch ch=-chi=-ck h=cl ck=(ch-chi
ch=ch=cls=ch=ch=ch=ch=ch=ch=0,

ei=-eh=-el el=-ek. (d)
eh=el=elh=edi=eh=eh=eli=eli=eh=eh=el=els=e%=0.

=k eh=eh=e=0.

Thus. we have, from (c) and (d).
o= €+ bl Gk + bl + ol |

+ C?z{irlfnfrzfuz + bbbl — % ko + ol Mlndia + f:zful]

+ llnlalishes + balastaer + balsahiabis + balistiali)
+ CQullinlei = labs)lialus + lish2) + Unslir = haliaKlvalss + als2)
+ b + badsaliodaa + ) + Undea + Dol Xzl + nlas)]
+ ¢Sl + hish)
+ cllUrales + lali)(liatia + lista) + (ales + IdoXiishar + b)),

e = elnlnl = lnliata — bafla = lalialey)
+ eUlbabsatis + babiabia ~ baisliy = lraleshahy
€ = €nllnko + bl + edslakis.

Bechmann's values for a-quartz are[8}
=874 ch=-1791 =011 el = -0.0406
ch= 698  ch=1072 =392 h=41.03
ch=1191  ch=57.94

in units of 10°Nim?2, C/m* and 10""*Fim for the c5q. ¢} and € respectively.
For the SC-cut quartz plate (¢ = 21.93°, 8 = 33.93°), the constants are listed in Table 1.
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Table I. Doubly-rotated quartz plate

4

L]
L]
[y %)
—
[
Loy
o
L]
[
)
I

COMETRHT UNITS
Cra=ELASTIC STIFFHESS. 1879 H/mE
Eir=PIEZQELECTRILC CONSTANT: C.ome
Kii=DlELECTRIC COMNST:18~-12 Fm

Cll= &&.7V400va8600]
Cié= 1.7 1 93689214
Ci13= 17.177013102
Cl4=-.484711423
C13=-13.5533839091
Cle=-9.1177467317
c2z2= 115, ?B°?89532
C23=-3.875153937
Czd4= &, 9?28683?89
C2S= .8851190534
C26= 18. 8369418361
C33= 182.8675182%
C34= 3. 3?1586?;?4
£35= 12.€681848557

C26=-9.713135685441
C44= 42.154846092¢8
C45=-9.713195085421
£46= .88511965334

€S5= 59.1161712855
C56= 5.59622323258

Cee= 38.7@a38287147
Etl= V. B812486008627E-2
Elg=-8.58822822078E-2
E13= 1. 47532221448E 4
Eld4= .@17175724355

E15= 8.?053863?456E-2
El6=-.129403484157
E21=-.1294834064157
E22= 8.39p858979159E-2
E23= 4.0831756624087E-2
E24=-5.99309706579E-2
E25= €.64Z272390907E-2

E26=-2.9472697970A7E-2
E31= £.78538637438E~2
E32=-5.993@97B6681E-2
E33=-2.71228938779E-2
E34= 4 .03175062408E-2
E35=-4.86513620922E-2
E36= 1| .98272330508E-2

Kil= 39. 21

K22= 39.7770473805
K23= .8429018334
K23= 48.4629526195
Ki12=K13=0
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